
,,. .
S 0 9 6 . 5 . 0 2 1

IIIGII SITHED SIMU1. A’1’OR - A SIMU1,ATOR FOR AI.I. SEASONS

K, l’atcl, W. l<cinbolt~,, & W. Robison

California lnstitutc of ‘J’cclmology
Jet l’repulsion 1.aboratory

4800 Oak Grove. IMivc
l’asaclcna, California 91109

FAX: (818) 39-?-1 178. E-mail: kcyllr.[:.~lo[el ti?j])l.?losfl.gov
PAX: (818) 393-1178. E-nmil: willim.k. rcitlllollz@j]] l.?lasa.gov
FAX: (818) 393-1178. L’-mail: wilmer.j. robison @jpl. Msfl.gov

A1\S”l’l<AC’J’: This paper will discuss the cvolu[ion of the Multimission Ground Syslcms Office’s
(MGSO) 1 ligb Speed Spacecraft Simulator (11SS) dcvclopmcnt at the Jet Propulsion 1.aboratory.
“1’his paper will examine the cvolulion from both a dcvclopn]cnt and operations pcrspcctivc. The
1 ligh Speed Spacecraft Simulator (11SS) in rcalit y is a series of simulators capable of modeling tbc
spacccrall anti ils subsystcm at cilhcr the bit or fumlional lCVCI, depending on specific mission
needs, An initial delivery of the 11SS was made to the Galileo (G] .1,) lk)jccl for the SOIC purpose
of validating the GI .1. I.ow Gain An[cnna mission’s flight soflwarc resulting from the stuck IJigh
Gain Antenna last year. IIUC to the cxccllcnt performance of the 11SS in assisting with the flight
sof[ware val idalion additional oppol-lunitics were idcnt ificd for its u sc on the G].]. l’rojccL ‘1’hcsc
opportunities included modeling of other on-board data systems, e.g. Command and I)ala
subsystcm, Atlitu(lc and Articulation Conlro] subsystcm. In addition to the data systcm simulator
and the fligh[soflwarc validation capabiliticx, (;l .1. lm rcplicalcd the 11SS for the purposes of
scqucncc validation and anomaly investigation to nalnc a few. I]ccausc the 11SS is a software
cnlulator of Ihc flight sys[cm, the rcplica[ion COSIS mocialcd with adding additional “lcslbcds” arc
not only mini mal but rcquirccl no addi t icmal m ai nt cnancc manpower to support. “1’hc 11ss
provides an unparallc]cd set of capabilities and sojilis[icatccl tools for supporting the operational
ncccls of a projccl while providing detailed visibility i]lto the internal workings of the spacecraft.
Today, J1’1 .’s MGS() organization is actively clcvcloping 1 li.gh Speed Spacccrafl Sinmlators for
both Ihc Cassini and Voyager]’mjcc[s.

‘1’hc wo]k dcscribcd in Illis paper has been earl-icd out by personnel at the Jet l’repulsion
1,almra[ory, California lnstita[c of ‘1’cchnology, under contract to lbc National Aeronautics and
Space Adlninistration.

1. IN’I’l<O1)U(:’l”l[)N

As lhc complexity of spacecraft and missions incrcasc, the vcritication of commands and
scqucnccs by usc of convcntiona] means bccomcs difficult and costly. ‘1’hc construction and
VCI iilca(ion of commands and scqucnccs has traditionally been a labor intensive and painstaking
pmccss. ‘1’hc usc of a hardware tcslbcd requires a tcaln of cnginccrs to operate and maintain the
cc]uipmcnt and fi~cilily. in adclition, the hardware tcs[bcd only provides a sing]c simulation
platform duc to lbc dcvclopmcnl of additional copies being cost prohibitive.

1 ligh fidc]ity spacecraft simulation invo]vcs Ihc execution of the actual binary flight software
loads on CPU emulators, interacting with the rmaindcr of the simulator just as it would wi[f~
fli{:h[hardware. As such, both compute-hscd co IIImand errors and the violation of latcnl
constraints can bc dctcctcd. With tbc aclvanccmcnt of dcsk(op workstations and d~cir
environments it is possible to perform high fidc]i(y simulations at least at mal-time and often
si~,nificantly faster than real-time.

2

2.1 I lST0R%

Since the advent of microprocessors in spacecraft avionics, it has been considered too complex to
pcrfom a rapid sinm]at ion of tllc data opcraiions of a spacecraf(bit for bit in order 10 test and
validate planned events. 1 lowcwer, advances in computing technology have provided machines
with previously unimagincd capabilities whic]l have]nadc this job feasible. In 1991 the IIigh
Speed Simulation (11SS) cfforl was pmposccl and appI owxl.

lnitia] pmtot ypcs [1] of the G].], (which incorpol-ates a data systcn~ consisting of six RCA 1802
l~lici-[)l~roccssors running at 200 Kllz and two spacccl afl data bum running at 400 K] Iz,) 11SS
WCI-C clcvclopcd on distributed mc]no]-y systems interfaced through serial buses, Data transfer ralcs
and 1 alcncy were critical and eventual 1 y it was found that a shared memory host architcc(urc
providccl the optimal pcrfc)rll)allcc[2,3]. An 8 processor Silicon Graphics computer with 40 M1lz
1{3000 processors and 2 stage cacllc interfaces to sh:u cd memory was used for protot ypcs. With
this configuration, it WM possible 10 run a silnu]ation 10 times faster than real time and
synchrmiz,c proccsscs at 75 IIz in simulated spacecraft tilnc (-750 lIz in real time.) This provided
the performance nccdccl to build [i too] :idcqu at c 10 support spacecraft operations.

MGSO is in the process of dclivcl-ing pl-o(tuc(ion versions of 11SS to Cassini (four 1.25 MIP 1750a
microprocessors connected by 1 h41 lY, 155 3b data buses) and Vo yagcr projects (very slow custom
]mccssor-s), llostcd on a Sun SC2000, with twelve SO-MI lZ SupcrSl)ARC processors, two-level
cache (20Kb instruction, 16Kb I>ala, lMt~ cxlcrnal), 3&t Mb of RAM, ancl 8 (111 disk. The Cassini
version of 11SS, when complctcd, will run al least seven times faster than real-time, allowing all
scqucnccs to bc simulalcd before transmission to lhc spacecraft. “1’hc Voyager 11SS, when
complctcd, will mn at least 700 times fas[e.r tlran real-linlc.

I
3. 11ss Ovl{l<vll’?vv

‘1’hc 11SS arcllilcc(ure is based upon components (figure 1,). There is a runtirnc library of
co]nponcnts (e.g. CPU models, bus lnodcls, other spacecraft hard ware models, simulation
schc.ctulcrs, data viewers, upli nk a MI do wnlink intcrfaccs) each of which has zero or more
interfaces (all s[andarciiz,cd) and cal] bc conncctcd at runlilne 10 any other model that supports a
compatible intcrfacc.

‘J’his archilcclurc provides a number of advantages. ‘1’hc two most imporlant being strongly-typed
runtinle componcn(interconncc[ions (called “Splices”) and strong conceptual partitioning. The
former insul-es that incorrect il][crcO1lI~cctiol)s arc rcjcc(cd, ‘1’hc lat(cr is a consequence of the Pdcl
tl~at a component’s intcrac(ion will] the syslcm is fully spccificd by its intcr~dccs, and thus the
scmanlics of a component can bc understood without having any understanding beyond the
i n(cl-faces. in order to construct a wol-ki ng simulator, a nulnbcr of simulation componcn(s must
bc crcamt and each of their intcrfidccs spliced 10 a complementary interface. A simulation
coJnponcnt h:is no internal knowledge of what il is conncctcd to (other than internal assumptions
about whal an interrupt line means, for example), so it is possible to connect any compatible
objccl to its splices. Onc usc of this is to interpose a monitoring object bctwccn two components
tllal would normally be spliced directly Iogctllcr, wllicll can pc.rform extra scrviccs such as
statistical analysis or graphical display.

The spacecraft systems to bc]nodc]cd typically consist of a number of Cl’Us interfaced via
multiple hi@ speed buses and of(cn inc]udc scvcrtil slnarl peripherals. Such a sys[crn is best
simulated on a shared-n~cn}ory multi-processor host. ‘1’hc spacecraft data system simulation
1 yJ)icall y consists of one process for each significant spacecraft componcn(, all cxccuti ng
simultaneously on separate host processors. ‘1’here arc usually about tcn such processes. }iach
process advances its components for an appropriate tim slice, lhcn all proccsscs synchronize to
assure that they stay in relative lime step. “1’hc slice size is usually the largest such that causality is

r. 3

not violated (usually tcn to a hundred pcr second), but in some cases (e.g., debugging) the slice
may be a microsecond, or even ICSS.

C++ waschoscn astl~cill~plcIllcllt:itiol~ language for simulation components, bccausc of ils run
time efficiency and its supporl for objccl-ol-icntcd programming. A processor cornponcn(, for
cxa]nplc. may emulate a hardware instruction set and the code which inmlcmcnls this rnusl be
suffi~cnlly fht to mcd the performance objectives of tlm simulator

‘--=-+

———

——

.—
~>“-- XL4

4 ‘–&lBCIOU -
80.s5
A$l c
ROhl
MM
. .
—

11-j~.—
Ss n Sliu.a
4A11CI lypic al

AAc’s
Chid bus
Iface ~rimd device

A A c ms

Most conlponcnts contain’ a cmbcddcd inlclprc[cr which recognizes the language ~cl. ~’cl is a
freely available cn~bcddablc language and concrete inlcrprclcr illll~lcll]clltali(jr~ dcvclopcd at Ihc
University of California, Bcrkc]cy. ‘l’cl was augmented to make it multi-thread (“Mrl’”) safe and 10
adci additional features, in particular a C+-+- class wrapper and a fast “rcmolc proccdurc call” that
cm CXCCUIC commands rclnotcly on named intcqxctcrs (many of the components within 11SS
cent a in named intcrprctcrs, wl~ich arc used to manipul atc the component) and return the result of
tl)c execution to the local intcrpmtcr. ‘1’hc 1 JSS ‘l”cl subsystcm is used for many things, including
mode.1 st atc examination slid altcral ion, cst ablishmcnt of model i ntcrcormcctions, and model sla(c
lnoniloring and display (using “l’k, a toolkit basccl on ‘l’cl w]]ich can c]uickly crcatc Graphical User
In(crl’aces). As a general rule, ‘l’cl is u scd unless citllcr performance or robustness concerns
dictalc Il]c usc of sp]iccs.

‘I”llc curl-cnt version of 11SS inclucics an Automatic Code Generator (ACG) based on Lhc NASA
CJ .11’S cxpcrl systcm. It is used to gcncratc mosl of IIIC code IIM1 can bc dcduccd from concise
specifications. ‘1’llis both makes it unncc.essary for lhc dcvc]opcrs to derive the nccdcd code (or
even to understand how to do so), md it makes it easy to alter the iniplcmcntalion bccausc tlIough
a conccp(may appear in many places, it only nccxl bc altmd once in the ACCJ.

.

.,
4

2“11c 11SS in~plcmcntalion consists of objects which model the large grain hmlwarc componcrm of
a sprrcccraft (e. g., 1750a pmccssors or 1553b bus control]crs for Cassini (figure 2.)). It was
observed that these components exhibited a natural packaging, with a small number of WCII
defined inlcrfaccs. For example, a processor usually contains at least onc rcatiwrilc intcrfacc to an
address space. ‘1’hc processor is modeled as an object which i ncludcs an cmbcddcd address
intcrfacc objccl, and pcrl’orms reads or writes to acldrcsscs via this cmbcddcd object. llc address
intcrfacc objccl is conncc(cd at run lime with another address inlcrfacc object, which forwards a
read or write operation into its owner component for action,

.— ~--- ‘-”
P– -- -----—,

.—— I.,
AACs

[[l ~WNS6RS. ! 1-
IHK USIMM, 1:NOINI; OIMH S,
<FAC31ON WF ;[2[..S

$*FY

b
I

[_.JlPPS Simulation F,&lity

L
m

Bit Leml

Th!S

r-l
Bit LcA &Furutiad

RS P
– — - r] FU-I

Fig[ire 2: Cassilli 11SS A rcl~itmtttrc

Simulation compcmcnts usually contain more Ihan om interface, e.g., processors contain intcrrupl
and other scrvicc lines. A simulation component can contain any ~iun~bcr of intcrfacc objcc~s,
including multiple copies of a sing,]c kind of intcrfacc. A componcnl is used during a simulation
run by creating a ncw instance of ils type and then hooking up each of its interfaces to a
complcnmlary intcrfacc.

‘1’hc 11SS syslcm includes a bit-level or functional-lcvc] simulation of the hardware components of
t]]c spacecraft s yslcm. Dccausc the components arc dccouplcd from each other and communicate
only via their inlcrfacc, they can bc conncc(cd in any way that rnccts localized objcclivcs for speed
and functionality. ‘1’here can bc several component irnplcmcnt aliens for a single proccssi ng
colnponcnt in the spacccrafl, and tllc choice of wdlicll to usc can bc made at run tirnc, Bit-level
sitnulations arc used where fidelity is of prilnc concern. I;tlrlctiollal-level simulations arc used
where performance is most important.

‘I”llc design philosophy for simulation conlponcn(s was that they should contain a simple and
lninilnal SCI of C-++ member functions (methods) to irnplcmcnt their functionality, but contain a
language intcrprctcr which would allow construction of arbitrarily complicated compound

5

opcraticms bmcd on the atomic member functions. 11 was felt that it would bc hard to anticipate all
of the functionality that might bc cicsircd from a silnulation component, but that by providing a
lallgll:tgc wllicl] could acccssa c()lllp()l)cllt' sl~asic ()]lclalio1ls wccouldprovidc any feature nccclcd
withoul cxtc.nsivc rcdcvclopmcnt.

All coIoponcJM share a small set of ccmnmn functions, which inc]ude an ‘cxccutc’ command to
causcsimulationfor aspccificdlcngthof time and a ‘set’ command’ for setting and rclricving the
value of a component’s internal variables. A co]nponcnt’s class definition contains a declaration of
all internal variables that will be available to “l’cl via lhc ‘set’ command, which can include.
pn)ccssor registers, mcniorics, and other mcladata which a component contains such as lis[s of bus
transactions, c.tc.. Objccls which inherit fr’om a base class object rcccivc the same ‘l’cl fu net ional it y
willmul having to rcdcclarc it. Individual component classes may also extend their command set
to provide functions particular to their operation

l’hc simulator operates in an i nt crprctcd fashion in constructing a spacecraft model to perform a
pal licular simulation. A single object is initially constmctcd, the “cxccutivc”, which is responsible
for intcrprcti ng ful-d)cr commands to crcatc objects, splice them together, and cxccutc simulation
activities. 1(then waits in a scrvicc loop for furlhcr mnmands from a user intcrfacc component, if
one has been crcatcd, or from the standard input if onc has not.

‘1’lw intcqwcted n:iturc of systcm construction allows for a great deal of flcxibilily, 11 is possible to
crcatc a slamlard simulation from a batch file, or to cvcatc a graphical user intcrfacc (GUI) which
offers clloiccs for configuration options 10 allow a uscl to bring up a customized simulator.

Commands to the cxcculivc arc ‘l’cl commands which a~c special to its class: ‘simncw’ for invoking
colnponcnt constructors, ‘splice’ for connecting c.o]liponcnt cmbcddcd interfaces together, etc.
Another command which is special to the cxccutivc is ‘simscnd’, wl]ich allows a “l’cl command to
bc sent to any object that has been crcatcd. ‘1’his allows sclipt driven ad hoc queries and
computation 10 be performed at any time, giving a lal gc amount of adaptability and flexibility to
tllc simulation systcm

‘1’lIc sinm]at ion can bc o~)cratcd by scndi ng ‘l’cl ‘cxccutc’ commands via tllc cxccutivc’s ‘simscnd’
conmands, but this is not fast enough for project specific sinmlation runs, Instvad, a ‘ schcdulcr’
conlponcnt is crcatcd which can form execution sjdiccs to simulation components, which add
minimal overhead in invoking component execution Imnbcr functions.

‘1’hc schedu]cr is responsible for enforcing rcndez,vous points during execution, l)uring parallel
cxccut ion of a simul at ion, a number of machi nc c yclcs for different components may bc cxccutcd
simultaneously ant] asynchronously, and if any interaction bctwccn components occurs at this
ti mc it will most likcl y not rcftccl the event ol-dct-ing that occurs on the red hardware. Rendezvous
pmvidc synchronization and a merging of threads so that component interactions arc properly
orclcrcd. Rendezvous times can be SC(to any value, fronl as litllc as onc simulation clock cycle to
any arbitrarily higher value. A onc clock cycle rendezvous ensures perfect fidelity to the
spacecraft hardware, but the overhead from this number of rendezvous greatly rcduccs
performance. Setting larger rendezvous values allows us to achicvc higllcr pcrformancc, but there
is m upper limit to the siz.c of a rcndcy,vous before the simulation fi~ils 10 mirror the actual
hard ware. in the GI.1. spacecraft, most tl-ansaclions bet wccn spacecraft components occur at a
“md time intcmpt” (1<3’1) which occurs Cvcl-y 1/15 second, but a number of sub-1<1’l transactions
also occur. Wc have found that rcndczvousi ng at]/5 of an R’1’l gives the largcsl time slice that will
work, but which still allows us to attain a tcn tilncs real time simulation,

.- .

Rcndez,vous points arc cnforccd by the schcdulcr even when execution commands arc sent which
would otherwise cause a rcnclczvous point to bc OVCI I-u n. l’or example, a user might choose to
single step the simulator through an intcrcs[ing portion, then ask it to jump ahead onc RTI, “1’hc

. .
6

schcdulcr issues connnwids 10 components 10 cxccutc for a particular number of clock cycles, and
reads the rclurn value of the call to find tl~c actual nulnbcr’ of cycles cxccutcct (a component may
cxccutc ICSS than the number of rcqucstcd cycles if it cannot finish an atomic operation). It then
compulcs the correct number of cycles to send to each componcn(on the next commfind based
on tlIc running total of cxccutcd time for’ each component and the]cngth c)f time to tbc next
rendezvous.

Asil)ltllatioll IIJaybc runolla sitlglcprc~ccss(~r or multiplcproccssor machine wilhno change in
code or configuration. On a sing]c processor]nacllinc, a parallel simulation simply cxccutcs
scqucnlially.

‘Monitors’ arc simulation components wl)ich arc not parl of a spacecraft model, and which serve as
conlpanion colnponcnls that watch and I-CpOI-t on the SMC of a spacecraft component, l.ikc all
components, they conl ain a 1’cI intcrprdcr which can IM oviclc any desired functionalist y by loading
Ihc proper “l’cl program. Monitors can bc crcatcd on tllc fly, and can bc added to or dclc[cd from
the schcclulcr as ncccssary. Monitors oflcn usc “simscnd” to communicate with their companion
component, but in some Cases (c.g, examination of a large number of mcmor y locations) a splice
is used, ins[cad

Onc usage of monitors is for debugging: the monitor is set to watch for any interesting state
spccificd by the logic in its script. On dctcc~ion of tl]is SMC, it can send a message or a rcclucsl to
halt of the simulation run. 11 can also bc used 10 send periodic values back 10 the cxccutivc which
can bc forwarded to a user intcrfac.c for display in any desired way, e.g. strip chart, dial, text, etc.

4. 01’EI{A’1’JONS

11SS is dc.signed to fit into the current mission opcrat ions pmccsscs, ‘1’hc simulator lakes i npul
iilcs and flight sof~warc loads “as is”. “1’llc 11SS acccpls uplink con~manc]s in the same way as lhc
actual spacecraft. “1’hc tclcmctry data s{rcam gcncralcd by 11SS can bc conncctcd 10 the real
ground tclcmctry handling systcm of the Ground 1)ala Systcm.

IIuring execution, 11SS gcncratcs a file which con[ains a timcstampcd lis(of commands cxccutcd
by tl]c spacecraft. “1’hc tile can bc compare.d with a prediction file gcncratcd by the M(;SO
scqucncc gcncl-ation sof[wrarc, to validalc that commands will bc cxccutcd at the correct time on
the spacecraft.

‘1’hc simulation may bc chcckpointcd at rcqucs(cd intervals. ‘1’hc chcckpointcd state can bc
xcstmcd at a later lime to continue execution. ‘J’his function can also bc used aflcr the detection of
an anomalous Condition, by restoring the most rc.ccnll y chcckpointcd stale vcclor and then si nglc
slcp forward unt i] the anomaly is again cncou nt crcd. ‘1’his will allow monitors to do sampling at
longer in!crvals whi]c still providing for a capability to pinpoint an cxacl anomaly state, without
significant y degrading sinml ator performance. Multiple copies of the chcckpointcd state can bc
run on multiple macllincs to explore multiple state space paths concurrently.

11SS provides lhc capabi]i[y (called timcjump) to r:ipidly advance time across quicsccnt periods,
tlm significantly increasing simulation speed. IIccausc all components of the spacccraf[arc
availab]c to the simulator, the user can tell the spacccr:ifl that an arbitrary amount of time has
passed and thus advance the state of tllc spacccraf[to tlm lICW till~c. ‘1’hc user must bc careful that
no impel-tant activities arc passed over.

11SS provides tl)c capability to simulate any spacecraft faults, bccausc the cornplctc state of the
sJxlcccraft is availab]c during lhc simulation, ‘1’hc user lnust identify the signature of the fault.

●

✌✎

7

‘1’hc simulator can inject LJMl signature onto tlw spaccc.rafl simulation. l’he user can then scc how
Il]c spacccraf[rcacls 10 the simul:itcd fault

11SS’s unsurpassed visihilit y plus it’s rcxd-time cnvironmcnl provides an cxccllcnt cnvirmmcnt to
tcsl flighl soflwarc. Might sof(warc dcvclopcrs have been hampered by clcbuggcrs that arc not
real-time oriented, “1’hcy arc sufficient for Icsting paths within routines, but arc not sufficient to
validate the correct operation of flight softw:il-c at the spacccraf[lCVC1. ‘J’raditionally, hardware test
platform arc in S11OII supply and gcncmll y have to bc shared by software and hardware
dcvc]opcrs. 11SS can provide any number of test platfol-ms with much more visibility than is
gcncrall y avai lablc from lmdwarc lest plat forlm.

Much of 11SS’s visibility is derived fmn its usc of the. ‘J’cl scripting language. Hach component of
the spacecraft being simulalcd is designed with visibility in mind so that the user may view and
modify rcgislcrs, memory, etc. which arc of interest, Ilccause the visibility is accessible from ‘I’cl,
the user may gcncratc condition checking of arbitf ary complcxit y. ‘Ilc user can lCSI for the
combination of any number of variables with full mithmctic and Doolcan funclions, The ‘J’cl
scripting language also allows the user to automate the execution of the simulator. “lhc user may
compose a script commanding the simulator appropl-ialc] y. ‘1’hc user at any time may validate that
any conditions cxpcctcd arc still valid. “J’hc 11SS dcvclopcrs usc this capability to run regression
tests nighlly.

5. l~Url’URl; DIR I;C”I’10N

A lwmbcr of ways have been iclcntificd 10 reduce tlic cost of developing llSS simulators. l’hc
theme common to lhc ideas outlined below is to move the rcprcscnlalion of the simulation more
towards the application domain, and away from the dcvclopmcnl domain. ‘1’his will rcducc the
cffml required to crcatc simulators, bccausc ICSS lranslat i on from spcci fication to lmplcmcnt ation
will bc required, and bccausc wc will bc able to t akc bet tcr advant agc of domain cxpcrlisc. In
other words, onc clay those that undcrst and the spacccr:ift archi lcct urc will bc dircc(l y lnvolvcd in
the crc:ition of the simulation, bccausc csolcric dc.vclopmcnt knowledge and skill will not bc
required.

GU1-based simulation construction - ‘1’here is no convenient and “intuitive” way of
rcprcscnti ng the design of a spacecraft simulation. It would not bc too difficult to
build a GU1-based spacecraft builder that allows the simulation dcsi.gncr to SCICC1
components and specify their interconnections. “1’llis should require ICSS tool skills of
the designer than lhc current script-based notation, and so allow individuals with
domain knowledge, but not profound tool Jmowlcdgc, to do such work.

Gene.rate models dircclly from specifications - “1’llcrc arc often hardware-oricn[cd
(e.g. VI IIJI. or Vcrilog) modcj spccificalicms available, crcatcd as a byproduci of
building the spacecraft hardware. Conventional silnulation of such products is fidr too
slow, bul there is promisil~g work suggesting tlmt it may bccomc possible to cxccutc
such modc]s at the functional lCVCJ with relaxed fidelity, with performance suflicicnt
for our needs. ‘1’his WOUIC1 rcclucc the 11SS dcvcloplncnt cycle time and COS1, and
i ncrcasc rcli abilit y, bccausc the currcntl y 1~~1[11:~1~-illtcl)sivc process of convcrti ng
hardware specifications into high-performance 11SS models might onc day bc
automalcd,

User-programmable models - Most models, cspcciall y complicated ones, arc writ lcn in
C++ and so to wolk on such a model, the dcvclopcr must bc a programmer as wcli.
Considcralion has been given to implementing]nodc]s that directly cxccutc domain-
orlcntcd notations (e.g., s(atc-based, ru]c-based, or procedural) so tha((1) the model
inlplcnlcnl N ion is more C1OSC1 y rcl atcd to the sJmificat ion; and (2) dOIllaill cxpcris
can write or lnspcct the models Inorc easily.

I

8

6. CONC1.USlON

11SS has shown that high speed simulation is possible for complex spacecraft systems with high
fidclit y. l’hc 11SS can bc used for a variety of Icsting ranging from scqucncc to flight software.
‘1’hc 11SS has been successfully USCCI on G1.1. for boll) sccILlcncc and flig,ht software testing. 1.atcr
tl~is year 11SS will bc dclivcrcd to both Cassini and Voyager projects.

1) John 1{. Xipsc ml Raymond Y. Ycung, “A Mul(i-Mission IIigh Speed Spacecraft Simulator
Concept”, l’reposal June 1991.

2) Alan Mmissctt ct al, “Multin~ission IIigh Speed Spacccraf[Simulation for the Galileo and
Gisani Missions”, AIAA Computing in Acrospacc 9, 1993.

3) W. K. Rcinllolly, and W. J. Robison, “-l’hc ZII’SIM Scl-ics of IIigh l’crformancc, Iligh Fidelity
Spacccrafl Simulators”, llth Annual AIAA/USU Confcrcncc on Small Satellites, August 1993.

